Back to Challenges

Energy efficiency friendly policy is at risk of increasing the embodied energy during the whole building life cycle

Created on 21-11-2024

Design, planning and building Policy and financing
Share it

It is crucial policies focussed on improving different areas of housing sustainability are harmonised to achieve the common goal of improving affordability and minimising negative environmental impacts of construction. Energy efficiency policies are at risk of taking a narrow focus on the use phase, lacking consideration for embodied energy arising from the production and transport of building materials and parts. How can policymakers ensure embodied carbon isn’t inadvertently increased and demolition is prevented? A whole life cycle approach is key to consider a greater range of factors over a much longer time-period to reduce this risk.

Systems knowledge

Actors

National government

This actor represents the central governing body and authority responsible for overseeing and managing the affairs of a nation, including policymaking, legislation, and implementation within a certain geographic area.

Local government

This denotes the administrative authority responsible for governing and managing local affairs within a specific geographic area, such as a city, town, or district, through local policies, regulations, and services.

Architects and designers

Experts

By experts, I mean individuals with specialized knowledge and experience in areas such as housing policy, urban planning, and affordable housing management. For example, housing policy researchers at a think tank, or city planners with expertise in sustainable housing development can be considered experts in this field.

Method

Interdisciplinary collaboration

Teams from different disciplines or fields work together to tackle complex problems, find innovative solutions and develop a broader understanding of a particular issue. This approach recognises that many real-world challenges cannot be adequately addressed within the confines of a single discipline or field.

Sustainability assessment systems

Frameworks, tools or methodologies used to assess and measure the sustainability performance of various entities, such as buildings, infrastructure projects, organisations and communities. These systems help assess and quantify environmental, social and economic impacts so that stakeholders can make informed decisions and improve sustainability practises.

Microdata collection

This method involves the systematic gathering of detailed (often on a household or individual level) data on a wide range of variables or characteristics, enabling in-depth analysis.

Policy reform

This refers to the process of making changes, revisions, or amendments to existing policies, laws, or regulations to improve their effectiveness, relevance, or desirability of outcomes.

Taxonomy

A taxonomy is a hierarchical classification system used to organise and categorise information, objects, or concepts based on shared characteristics or attributes. It helps facilitate understanding, communication, and the systematic arrangement of data for easier retrieval and analysis.

Tools

Sustainability assessment systems

Frameworks, tools, or methodologies used to assess and measure the sustainability performance of various entities, such as buildings, infrastructure projects, organisations, and communities. These systems help assess and quantify environmental, social and economic impacts so stakeholders can make informed decisions and improve sustainability practices.

Building Information Modeling (BIM)

Target knowledge

Topic

Building regulations

A set of government-mandated standards, rules, and requirements that define how building and construction projects should be designed and executed.

Environmental sustainability

The responsible and balanced use of environmental resources to ensure that they are conserved and available for present and future generations. It involves protecting and conserving the natural environment while promoting human well-being.

Dimension

Environmental

This dimension focuses on understanding and addressing the environmental challenges and concerns related to human activities and their impact on the natural world.

Governance

This involves networks, systems and processes that steer decision-making, service delivery and policy implementation.

Level

Building

The structure, project or development that is directly impacted by the various building regulations.

Transformation Knowledge

Policy

Fostering more industrialized/off-site approach to construction

Decarbonization strategy

Project

Decarbonization strategy

Make sure the social aspects of the energy transition are at the same level as environment objectives

Partnership

Reducing the carbon footprint and promoting biodiversity

Quality of life should be considered alongside the quality of houses themselves

Fostering more industrialized/off-site approach to construction

Policies can contribute to advancing sustainability in housing provision

Related cases

Related vocabulary

Sustainability

BIM

Energy Retrofit

Circular Economy

Life Cycle Assessment (LCA)

Area: Community participation

Contemporary scholars generally accept the multidimensional understanding of sustainability - social, political, economic, cultural and environmental amongst other dimensions – but the concept used to be defined more narrowly as the ‘conservation of natural resources’ and the ‘restoration of ecological balance’ (Meadows et al. 1972). While the ‘Brundtland Report’ was instrumental in broadening the definition and bridging the environmental and economic dimensions (WCED 1987), it was Elkington who stressed the social dimension in the ‘triple bottom line’ of ‘people, planet, profit’ (1998). However, the role of community participation as an elementary part of social sustainability was only established after the turn of the millennium by Giddings et al. (2002). They emphasised the participation aspect of procedural equity “so that people are able to shape their own futures” (ibid., p.194). Dempsey et al. (2011) drew upon this contribution when they considered urban sustainability from a community approach and concluded that communities thrive upon social interaction between community members, organisational initiative through collective groups and networks, the relative stability of a neighbourhood in terms of net migration and turnover, a positive identification or sense of place and the level of trust that follows from a perception of safety. These factors are summarised by Dixon and Woodcraft (2013, p.475) as “the extent to which a neighbourhood supports individual and collective well-being (…) It combines design of the physical environment with a focus on how the people who live in and use a space relate to each other and function as a community”. While most community participation researchers look into social sustainability on the neighbourhood level, Putnam’s book ‘Bowling alone’ (2000) described how a lack of social capital, here understood as strong civic participation and localised empowerment, could prevent collective action and undermine democracy on the macro-level. 

Created on 21-07-2021

Author: T.Croon (ESR11), J.Hoekstra (Supervisor)

Read more ->

Area: Design, planning and building

Building Information Modelling (BIM) is the process of creating a set of digital representations which consists of both graphical and non-graphical data for the entire building cycle  (Eastman et al., 2011). This process involves documenting, gathering, organising, and updating this information throughout the whole life cycle of a building from conception to demolition (Eschenbruch & Bodden, 2018). Beyond the demolition stage BIM can also support circular principles; managing the re-use, recovery, and recycling-potential of a building (Akbarieh et al., 2020; Xue et al., 2021). Whilst the concept of BIM as a process is supported by the International Organisation for Standardisation in ISO 19650-1:2018 (ISO, 2018), the National BIM Standard describes BIM as a digital technology (NBIMS-US, 2015). Despite the origins of BIM dating back to the 1970s, it did not become widely adopted by the Architecture, Engineering and Construction (AEC) industry as a computer design tool until the 2000s (Costa, 2017). The digital building information model uses intelligent objects to store information in the form of three-dimensional geometric components along with its functional characteristics such as type, materials, technical properties, or costs (Eschenbruch & Bodden, 2018). This model forms the basis of a shared knowledge resource to support the various digital workflows of multidisciplinary stakeholders (Chong, Lee and Wang, 2017; Barile et al., 2018). Moreover, it serves the purpose of visualisation, clash detection between different building components, code criteria checking, environmental analysis, and cost estimation to name a few (Kamel & Memari, 2019; Krygiel & Nies, 2008). Therefore, utilising BIM can improve construction accuracy and enhance the built asset’s performance (Kubba, 2017; Love et al., 2013). The building information model facilitates the knowledge transfer between experts and project participants to satisfy end-user needs and support early-stage decision-making (Chong et al., 2017; Lu et al., 2017). Therefore, BIM can be considered a transdisciplinary practice as it communicates AEC, computation, and science (Correia et al., 2017). In the AEC industry implementing BIM involves several stages, which are known as BIM maturity models. The maturity here means the extent of the user’s ability to produce and exchange information. These stages are the milestones, or levels, of collaboration and sharing of information that teams, and organisations aspire to. Defining these milestones is the main purpose of the different BIM maturity models that exist nowadays (Succar et al., 2012). The European Commission (EC) encourages step-by-step maturity models starting from BIM level 0 up to 4, to move the industry from a traditional modelling approach towards an open BIM approach. According to the EC, to reach BIM level 4 “all project, operational documentation and history are linked to objects in the model” (European Commission, 2017). Due to growing concerns over the environmental, economic, and social impacts of the built environment, BIM is increasingly used to facilitate various sustainability analyses. In this regard, the concept of Green BIM initiated as the systematic digitalisation of building life cycles to accomplish established sustainability goals (Barile et al., 2018; Wong & Zhou, 2015). As such BIM has been integrated with Life Cycle Analysis (LCA), Life Cycle Costing Analysis (LCCA), and recently with Social Life Cycle Analysis (S-LCA) (Llatas et al., 2020). Today several BIM applications perform sustainability analysis in conjunction with Green Building Rating Systems (Sartori et al., 2021). In relation to housing BIM plays a crucial role in addressing affordability and sustainability issues from creation to maintenance, as well as the beyond end-of-life phases. However, many challenges remain for it to be fully and inclusively integrated within the AEC practice and for the full potential of BIM to be realised.

Created on 16-02-2022

Author: A.Elghandour (ESR4), A.Davis (ESR1)

Read more ->

Area: Design, planning and building

Buildings are responsible for approximately 40% of energy consumption and 36% of greenhouse gas emissions in the EU (European Commission, 2021). Energy retrofit is also referred to as building energy retrofit, low carbon retrofit, energy efficiency retrofit and energy renovation; all terms related to the upgrading of existing buildings energy performance to achieve high levels of energy efficiency. Energy retrofit significantly reduces energy use and energy demand (Femenías et al., 2018; Outcault et al., 2022), tackles fuel (energy) poverty, and lowers carbon emissions (Karvonen, 2013). It is widely acknowledged that building energy retrofit should result in a reduction of carbon emissions by at least 60% compared with pre-retrofit emissions, in order to stabilise atmospheric carbon concentration and mitigate climate change (Fawcett, 2014; Outcault et al., 2022). Energy retrofit can also improve comfort, convenience, and aesthetics (Karvonen, 2013). There are two main approaches to deep energy retrofit, fabric-first and whole-house systems. The fabric-first approach prioritises upgrades to the building envelope through four main technical improvements: increased airtightness; increased thermal insulation; improving the efficiency of systems such as heating, lighting, and electrical appliances; and installation of renewables such as photovoltaics (Institute for Sustainability & UCL Energy Institute, 2012). The whole-house systems approach to retrofit further considers the interaction between the climate, building site, occupant, and other components of a building (Institute for Sustainability & UCL Energy Institute, 2012). In this way, the building becomes an energy system with interdependent parts that strongly affect one another, and energy performance is considered a result of the whole system activity. Energy retrofit can be deep, over-time, or partial (Femenías et al., 2018). Deep energy retrofit is considered a onetime event that utilises all available energy saving technologies at that time to reduce energy consumption by 60% - 90% (Fawcett, 2014; Femenías et al., 2018). Over-time retrofit spreads the deep retrofit process out over a strategic period of time, allowing for the integration of future technologies (Femenías et al., 2018). Partial retrofit can also involve several interventions over time but is particularly appropriate to protect architectural works with a high cultural value, retrofitting with the least-invasive energy efficiency measures (Femenías et al., 2018). Energy retrofit of existing social housing tends to be driven by cost, use of eco-friendly products, and energy savings (Sojkova et al., 2019). Energy savings are particularly important in colder climates where households require greater energy loads for space heating and thermal comfort and are therefore at risk of fuel poverty (Sojkova et al., 2019; Zahiri & Elsharkawy, 2018). Similarly, extremely warm climates requiring high energy loads for air conditioning in the summer can contribute to fuel poverty and will benefit from energy retrofit (Tabata & Tsai, 2020). Femenías et al’s (2018) extensive literature review on property owners’ attitudes to energy efficiency argues that retrofit is typically motivated by other needs, referred to by Outcault et al (2022) as ‘non-energy impacts’ (NEIs). While lists of NEIs are inconsistent in the literature, categories related to “weatherization retrofit” refer to comfort, health, safety, and indoor air quality (Outcault et al., 2022). Worldwide retrofit schemes such as RetrofitWorks and EnerPHit use varying metrics to define low carbon retrofit, but their universally adopted focus has been on end-point performance targets, which do not include changes to energy using behaviour and practice (Fawcett, 2014). An example of an end-point performance target is Passivhaus’ refurbishment standard (EnerPHit), which requires a heating demand below 25 kWh/(m²a) in cool-temperate climate zones; zones are categorised according to the Passive House Planning Package (PHPP) (Passive House Institute, 2016).  

Created on 23-05-2022

Author: S.Furman (ESR2)

Read more ->

Area: Design, planning and building

Circular Economy (CE), also referred to as circularity, is a sustainability concept applied to various industries – including the built environment – which aims to improve the way products are made and consumed, and essentially to prevent the unnecessary destruction of resources. The CE idea is founded on the rejection of the current take-make-waste model and instead supports a system that is “restorative or regenerative by intention and design” (EMF, 2013, p.7). The European Commission defines CE as “a system which maintains the value of products, materials and resources in the economy for as long as possible and minimises the generation of waste” (EUR-Lex, 2021). CE builds upon concepts such as Cradle-to-Cradle (McDonough & Braungart, 2002) and The Performance Economy (Stahel, 2010). The term has recently grown in popularity, as evidenced in a study by Kirchherr et al., who identified 221 CE definitions, though the meaning of the term remains largely ambiguous (2023). CE encompasses both design and business considerations to better ensure products are responsibly managed and retained at their highest value possible within the value chain, rather than being destroyed. Business strategies include shifting consumption from selling products to services; this can take the form of Product-as-as-Service models or take-back schemes (Tukker, 2015). Several prominent theoretical frameworks support the CE transition, these include the R-Ladder outlining a decision-making hierarchy (Potting et al., 2017), the Ellen MacArthur Foundation’s Butterfly diagram which distinguishes technological materials from biological materials (EMF, 2013), and Bocken et al.’s four strategies defining the need to close, slow, narrow, and regenerate resource loops (2016). Key circular construction approaches that facilitate circularity in a systematic way include design for disassembly and industrialised construction. Several political instruments under the European Green Deal promote the progression towards a circular economy in buildings and housing, most notably the Circular Economy Action Plan (European Commission, 2020) and the Waste Framework Directive (EC, 2008). Despite these initiatives and the potential for the CE transition to improve both the environmental sustainability and affordability of housing, it is still in the early stages in Europe. This is largely due to building complexity, short-term financial barriers, and the persistence of common practices such as the extraction of raw materials and building demolition. However, several practical advancements that have been implemented include Circular Economy Statements within the London Plan (GLA, 2022), the Building Circularity Indicator (BCI) in the Netherlands (Alba Concepts, n.d.), and the Building Circularity Tool by OneClick LCA (n.d.).

Created on 30-09-2024

Author: A.Davis (ESR1)

Read more ->

Area: Design, planning and building

Life Cycle Assessment (LCA) is a standardised method to comprehensively quantify environmental impacts caused by the production of goods and services, which can be used to inform decision-making in building design. Measurable indicators include Global Warming Potential (GWP), acidification, eutrophication, and water use to name a few (European Commission, 2010). LCA can be used to account for all input and output flows related to the entire building life cycle, from raw material acquisition, manufacture, use and maintenance (e.g. while the building is occupied), to the deconstruction and beyond End-of-Life phase (Sartori et al., 2021). Calculating an LCA requires information for building products and processes usually found in the Bill of Quantities, which includes the type of material and its density combined with the amount of material, measured in either volume or area. The European standard EN 15978 (2011) provides guidance for the calculation method, which breaks down the life cycle into phases A to D, these are: A Production and Construction, B Use, C End-of-Life, and D Beyond End-of-Life. It should be noted however, that it is difficult to compare different buildings using LCA, as methodologies and assumptions vary, impacting results (Ramboll, 2023). An LCA that includes stage D is known as a ‘cradle-to-cradle’ assessment, this supports a circular approach and considers scenarios relating to the building after its ‘useful service life’. It is crucial for stakeholders to consider the beyond End-of-Life impacts when planning and designing housing to support the circular economy transition, primarily through promoting future material reuse. LCA is an increasingly relevant component of sustainability assessments for buildings following demand for transparency from the construction industry and trends in performance-based design (Sartori et al., 2021). The LCA method has been incorporated into the European Level(s) framework (Dodd & Donatello, 2020), and BREEAM and LEED assessments. The European Commission advocates for LCA, describing it as the "best framework for assessing the potential environmental impacts of products" (European Commission, n.d.). LCA therefore plays an increasingly prominent role in supporting EU policy and meeting the ambitions of the European Green Deal and related initiatives, such as the Circular Economy Action Plan (European Commission, 2020). At the national level, several European countries utilise LCA to regulate embodied carbon, with other countries expected to follow suit in the coming years (Röck et al., 2022).

Created on 30-09-2024

Author: A.Davis (ESR1)

Read more ->

Related publications

Blogposts

Icon solar-decathlon-competition-and-lca-secondment-with-upv

Solar Decathlon Competition and LCA | Secondment with UPV

Posted on 27-10-2022

Leading up to the summer I completed my first secondment of three months at the Universitat Politènica de València (UPV), which was conveniently only a three-hour journey south along the Spanish coast from my host institution in Barcelona.   Life in Valencia involved drinking copious amounts of horchata (a local drink made from tiger nuts called Xufa) and enjoying Jardin del Turia, a park that was once a river which today hosts attractions such as gardens, sports facilities, and futuristic cultural buildings designed by architect Santiago Calatrava. I had the pleasure of working with my co-supervisor Ignacio Guillén and Life Cycle Assessment (LCA) expert Alberto Quintana Gallardo, Ph. D. in the department of Applied Physics. Together they provided excellent support with my plans to investigate housing projects from this year’s Solar Decathlon competition and to learn and apply LCA to built case studies during my stay.   As my project investigates Design for Disassembly (DfD) – in addition to Industrialised Construction – the Solar Decathlon competition was an exciting and unique opportunity to observe the disassembly and reassembly of sustainable homes, including the Spanish entry from team Azalea at UPV. As a former practicing architect where I worked with sustainability consultants who normally carry out LCA’s, I was also very eager to learn how to actually do an LCA myself.   Solar Decathlon So what is the Solar Decathlon competition? It is an international competition where teams from universities build prototype homes known as ‘House Demonstration Units’ (HDU) that showcase the best in innovation and energy efficiency using renewable energy. Although the design aspect of the competition focusses on minimising operational carbon, the build challenge requires teams to first construct their HDU at a site in their home country, disassemble it, then transport and reassemble it in only two weeks at the competition site, also known as the Solar Campus. This means designing for disassembly is integral to the competition, making it a fantastic opportunity to study how housing can be more resource efficient over the building life cycle and understand practical building issues.   The competition and reassembly of the houses took place this year in May at the Solar Campus in Wuppertal, Germany. The 16 teams that made it to the build phase heralded from the Netherlands, France, Sweden, Romania, Czech Republic, Turkey, Taiwan, Germany itself, and of course Spain.   I seized the opportunity to observe and ask questions about the disassembly process, the reassembly process, and carry out interviews with each of the Solar Decathlon teams. When I arrived at UPV at the start of May, Team Azalea from UPV had finished building their HDU called the Escalà project on campus and had just held their inauguration event. Over the first two weeks of my secondment, I visited the house every day whilst it was slowly disappearing as it was taken apart and loaded onto five trucks headed to Germany, where the team would shortly reassemble it all over again! During this time, I got to know the team members who had bonded immensely during the intense competition period until this point. Before heading to Wuppertal myself, I was able to pilot interview questions covering technical and environmental sustainably aspects of the project with the Azalea team, as well as remotely with the SUM team from TU Delft.   The energy at the Solar Campus in Wuppertal was palpable as the teams were busy reassembling their HDU’s, each had an internal floor area of around 70m2 to give an idea of scale. I quickly got to know each of the projects and schedule interviews with the 16 teams, who kindly volunteered their time during the middle of the hectic reassembly period before the houses were judged and opened to the public. I managed to interview 13 teams on-site (the remaining teams were later interviewed online), including participants from different fields and both students and professors. Each team had a unique solution to the brief which called for either vertical and horizontal extensions or in-fill proposals. It was not only insightful but a pleasure speaking with true pioneering experts in housing designed for disassembly. Now’s time to complete the analysis of all that data!   Check out my Instagram highlights of SDE-22 for some on-the-ground footage.   LCA Life Cycle Assessment (LCA) is an increasingly popular methodology and decision-supporting tool used by industry professionals and scholars to measure and compare the environmental impacts of buildings (European Commission, 2010). An LCA can be used to calculate Whole Life Carbon (WLC), which includes both embodied carbon from all the materials, processes, and transport to construct buildings and the operational carbon produced whilst a building is inhabited. WLC assessments are crucial to set environmental targets to decarbonise our building stock. There is currently a big knowledge gap around LCA amongst architectural practitioners and other stakeholders involved in the delivery of housing, partly due to the time-consuming nature of LCA’s. An LCA can be calculated simply with an excel spreadsheet or using various online platforms and plug-ins such as OneClick LCA, but amongst scholars more heavy software is called for, such as SimaPro – which is was what I would be learning to use whilst at UPV. My aim here was to carry out cradle-to-cradle LCA’s of case studies to quantify the benefits of DfD and the consideration of different lifespans for different parts of the building.   Work began on the first case study of a house designed and delivered by my co-supervisor Ignacio Guillén called Edificación Eco-Eficiente, or ‘EEE’, this was awarded a Class A energy rating and was the first single-family home in Spain to achieve the maximum VERDE* rating of 5 leaves. EEE was built using Industrialised Construction and prefabricated 2D elements that were assembled on-site in only 19 days. I was also able to visit the house on the UPV campus, though due to security reasons it can’t be used as a living-lab, which is a shame as it could provide some great in-use data on energy efficiency!   Using Simapro was (and still is) a steep learning curve with an incredible amount of precise and technical information that needs to be included. Imagine having to enter every single built element manually into a software, and not just modelled 3D objects but also coatings such as the surface area of zinc needed to galvanise steel, the grouting between tiles… the list goes on. Needless to say, LCA is an invaluable tool and will contribute greatly to my doctoral research project.     ¡Hasta pronto! I will be seeing my colleagues in Valencia again next month for the VIBRArch conference held by UPV to present my ongoing work on LCA. My secondment was invaluable in learning new skills and creating connections, particularly through the Solar Decathlon competition that I am continuing to follow up. Thank you to everyone at UPV, the Azalea team, and Solar Decathlon participants who provided such positive experiences and research opportunities!      *VERDE is a sustainability certification developed by Green Building Council Spain     Bibliography   Solar Decathlon Europe Competition website and knowledge platform with previous year’s entries https://sde21.eu/sde21 https://building-competition.org/   Team Azalea’s Instagram page and website https://www.instagram.com/azaleaupv/?hl=en   https://www.azaleaupv.com/   London Energy Transformation Initative ‘LETI’ provide an excellent embodied carbon primer for further reading on Whole Life Carbon   https://www.leti.uk/_files/ugd/252d09_8ceffcbcafdb43cf8a19ab9af5073b92.pdf     References European Commission. (2010). ILCD Handbook - General Guide for Life Cycle Assessment: Detailed Guidance (1st ed.). Publications Office of the European Union.  

Author: A.Davis (ESR1)

Secondments

Read more ->