Back to Vocabulary

Circular Economy

Area: Design, planning and building

Circular Economy (CE), also referred to as circularity, is a sustainability concept applied to various industries – including the built environment – which aims to improve the way products are made and consumed, and essentially to prevent the unnecessary destruction of resources. The CE idea is founded on the rejection of the current take-make-waste model and instead supports a system that is “restorative or regenerative by intention and design” (EMF, 2013, p.7). The European Commission defines CE as “a system which maintains the value of products, materials and resources in the economy for as long as possible and minimises the generation of waste” (EUR-Lex, 2021). CE builds upon concepts such as Cradle-to-Cradle (McDonough & Braungart, 2002) and The Performance Economy (Stahel, 2010). The term has recently grown in popularity, as evidenced in a study by Kirchherr et al., who identified 221 CE definitions, though the meaning of the term remains largely ambiguous (2023).

CE encompasses both design and business considerations to better ensure products are responsibly managed and retained at their highest value possible within the value chain, rather than being destroyed. Business strategies include shifting consumption from selling products to services; this can take the form of Product-as-as-Service models or take-back schemes (Tukker, 2015). Several prominent theoretical frameworks support the CE transition, these include the R-Ladder outlining a decision-making hierarchy (Potting et al., 2017), the Ellen MacArthur Foundation’s Butterfly diagram which distinguishes technological materials from biological materials (EMF, 2013), and Bocken et al.’s four strategies defining the need to close, slow, narrow, and regenerate resource loops (2016). Key circular construction approaches that facilitate circularity in a systematic way include design for disassembly and industrialised construction.

Several political instruments under the European Green Deal promote the progression towards a circular economy in buildings and housing, most notably the Circular Economy Action Plan (European Commission, 2020) and the Waste Framework Directive (EC, 2008). Despite these initiatives and the potential for the CE transition to improve both the environmental sustainability and affordability of housing, it is still in the early stages in Europe. This is largely due to building complexity, short-term financial barriers, and the persistence of common practices such as the extraction of raw materials and building demolition. However, several practical advancements that have been implemented include Circular Economy Statements within the London Plan (GLA, 2022), the Building Circularity Indicator (BCI) in the Netherlands (Alba Concepts, n.d.), and the Building Circularity Tool by OneClick LCA (n.d.).

References

Alba Concepts. (n.d.). Welkom bij BCI Gebouw. Retrieved May 29, 2024, from https://www.bcigebouw.nl/

Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering, 33(5), 308–320. https://doi.org/10.1080/21681015.2016.1172124

EC. (2008). Waste Framework Directive 2008/98/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0098-20180705

EMF. (2013). Towards the Circular Economy. https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an

EUR-Lex. (2021). Circular Economy. https://eur-lex.europa.eu/EN/legal-content/glossary/circular-economy.html#:~:text=A%20circular%20economy%20is%20a,minimises%20the%20generation%20of%20waste.

European Commission. (2020). First Circular Economy Action Plan. https://ec.europa.eu/environment/topics/circular-economy/first-circular-economy-action-plan_es

GLA. (2022). London Plan - Guidance Circular Economy Statements. www.london.gov.uk

Kirchherr, J., Yang, N.-H. N., Schulze-Spüntrup, F., Heerink, M. J., & Hartley, K. (2023). Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resources, Conservation and Recycling, 194, 107001. https://doi.org/10.1016/j.resconrec.2023.107001

McDonough, W., & Braungart, M. (2002). Cradle to Cradle: Remaking the Way We Make Things. North Point Press.

OneClick LCA. (n.d.). Measure circularity in construction. Retrieved May 29, 2024, from https://oneclicklca.com/software/design-construction/building-circularity

Potting, J., Hekkert, M., Worrell, E., & Hanemaaijer, A. (2017). Circular Economy: measuring innovation in the product chain.

Stahel, W. (2010). The performance economy (2nd ed.). Palgrave-MacMillan.

Tukker, A. (2015). Product services for a resource-efficient and circular economy - A review. Journal of Cleaner Production, 97, 76–91. https://doi.org/10.1016/j.jclepro.2013.11.049

Created on 30-09-2024 | Update on 23-10-2024

Related definitions

Design for Disassembly

Author: A.Davis (ESR1)

Area: Design, planning and building

Design for Disassembly (DfD), also referred to as Design for Deconstruction or Construction in Reverse, is the design and planning of the future disassembly of a building, in addition to its assembly (Cruz Rios & Grau, 2019). Disassembly enables the non-destructive recovery of building materials to re-introduce resources back into the supply chain, either for the same function or as a new product. Designing buildings for their future disassembly can reduce both the consumption of new raw materials and the negative environmental impacts associated with the production of new building products, such as embodied carbon. DfD is considered the “ultimate cradle-to-cradle cycle strategy” (Smith, 2010, p.222) that has the potential to maximise the economic value of materials whilst minimising harmful environmental impacts. It is therefore a crucial technical design consideration that supports the transition to a Circular Economy. Additional benefits include increased flexibility and adaptability, optimised maintenance, and retention of heritage (Rios et al., 2015). DfD is based on design principles such as: standardised and interchangeable components and connections, use of non-composite products, dry construction methods, use of prefabrication, mechanical connections as opposed to glues and wet sealants, designing with safety and accessibility in mind, and documentation of materials and methods for disassembly (Crowther, 2005; Guy & Ciarimboli, 2008; Tingley & Davison, 2011). DfD shares commonality with Industrialised Construction, which often centres around off-site prefabrication. Industrialising the production of housing can therefore be more environmentally sustainable and financially attractive if building parts are produced at scale and pre-designed to be taken apart without destroying connecting parts. Disassembly plays an important role in the recovery of building materials based on the 3Rs principle (reduce, reuse, recycle) during the maintenance, renovation, relocation and reassembly, and the end-of-life phases of a building. Whilst a building is in use, different elements are expected to be replaced at the end of their service life, which varies depending on its function. For example, the internal layout of a building changes at a different rate to the building services, and the disassembly of these parts would therefore take place at different points in time. Brand’s (1994) Shearing Layers concept incorporates this time aspect by breaking down a building into six layers, separating the “site”, “structure”, “skin” (building envelope), “services”, “space plan”, and “stuff” (furniture) to account for their varying lifespans. DfD enables the removal, replacement, and reuse of materials throughout the service life of a building, extending it use phase for as long as possible. However, there is less guarantee that a building will be disassembled at the end of its service life, rather than destructively demolished and sent to landfill.

Created on 18-10-2023 | Update on 23-10-2024

Read more ->
Industrialised Construction

Author: C.Martín (ESR14), A.Davis (ESR1)

Area: Design, planning and building

Industrialised Construction, also referred to as Modern Methods of Construction in the UK (Ministry of Housing, 2019) and Conceptueel Bouwen (Conceptual Building) in the Netherlands (NCB, n.d.), is a broad and dynamic term encompassing innovative techniques and processes that are transforming the construction industry (Lessing, 2006; Smith & Quale, 2017). It is a product-based approach that reinforces continuous improvement, rather than a project-based one, and emphasises the use of standardised components and systems to improve build quality and achieve sustainability goals (Kieran & Timberlake, 2004).  Industrialised Construction can be based on using a kit-of parts and is often likened to a LEGO set, as well as the automotive industry's assembly line and lean production. Industrialisation in the construction sector presents a paradigm shift, driven by advancements in technology (Bock & Linner, 2015). It involves both off-site and on-site processes, with a significant portion occurring in factory-controlled conditions (Andersson & Lessing, 2017). Off-site construction entails the prefabrication of building components manufactured using a combination of two-dimensional (2D), three-dimensional (3D), and hybrid methods, where traditional construction techniques meet cutting-edge technologies such as robotic automation. Industrialised construction is not limited to off-site production, it also encompasses on-site production, including the emerging use of 3D printing or the deployment of temporary or mobile factories. Industrialised Construction increasingly leverages digital and industry 4.0 technologies, such as Building Information Modelling (BIM), Internet of Things, big data, and predictive analysis (Qi et al., 2021). These processes and digital tools enable accurate planning, simulation, and optimisation of construction processes, resulting in enhanced productivity, quality, and resource management. It is important to stress that Industrialised Construction is not only about the physical construction methods, but also the intangible processes involved in the design and delivery of buildings. Industrialised construction offers several benefits across economic, social, and environmental dimensions. From an economic perspective, it reduces construction time and costs in comparison to traditional methods, while providing safer working conditions and eliminates delays due to adverse weather. By employing standardisation and efficient manufacturing processes, it enables affordable and social housing projects to be delivered in a shorter timeframe through economies of scale (Frandsen, 2017). On the social front, Industrialised Construction can enable mass customisation and customer-centric approaches, to provide more flexible solutions while maintaining economic feasibility (Piller, 2004). From an environmental standpoint, industrialised construction minimises waste generation during production by optimising material usage and facilitates the incorporation of Design for Disassembly (Crowther, 2005) and the potential reusability of building elements, promoting both flexibility and a Circular Economy (EC, 2020). This capability aligns with the principles of cradle-to-cradle design, wherein materials and components are continuously repurposed to reduce resource depletion and waste accumulation. Challenges remain in terms of overcoming misconceptions and gaining social acceptance, the slow digital transformation of the construction industry, high factory set-up costs, the lack of interdisciplinary integration of stakeholders from the initial stages, and adapting to unconventional workflows. However, Industrialised Construction will undoubtedly shape the future of the built environment, providing solutions for the increasing demand for sustainable and affordable housing (Bertram et al., 2019).

Created on 09-11-2023 | Update on 23-10-2024

Read more ->
Life Cycle Assessment (LCA)

Author: A.Davis (ESR1)

Area: Design, planning and building

Life Cycle Assessment (LCA) is a standardised method to comprehensively quantify environmental impacts caused by the production of goods and services, which can be used to inform decision-making in building design. Measurable indicators include Global Warming Potential (GWP), acidification, eutrophication, and water use to name a few (European Commission, 2010). LCA can be used to account for all input and output flows related to the entire building life cycle, from raw material acquisition, manufacture, use and maintenance (e.g. while the building is occupied), to the deconstruction and beyond End-of-Life phase (Sartori et al., 2021). Calculating an LCA requires information for building products and processes usually found in the Bill of Quantities, which includes the type of material and its density combined with the amount of material, measured in either volume or area. The European standard EN 15978 (2011) provides guidance for the calculation method, which breaks down the life cycle into phases A to D, these are: A Production and Construction, B Use, C End-of-Life, and D Beyond End-of-Life. It should be noted however, that it is difficult to compare different buildings using LCA, as methodologies and assumptions vary, impacting results (Ramboll, 2023). An LCA that includes stage D is known as a ‘cradle-to-cradle’ assessment, this supports a circular approach and considers scenarios relating to the building after its ‘useful service life’. It is crucial for stakeholders to consider the beyond End-of-Life impacts when planning and designing housing to support the circular economy transition, primarily through promoting future material reuse. LCA is an increasingly relevant component of sustainability assessments for buildings following demand for transparency from the construction industry and trends in performance-based design (Sartori et al., 2021). The LCA method has been incorporated into the European Level(s) framework (Dodd & Donatello, 2020), and BREEAM and LEED assessments. The European Commission advocates for LCA, describing it as the "best framework for assessing the potential environmental impacts of products" (European Commission, n.d.). LCA therefore plays an increasingly prominent role in supporting EU policy and meeting the ambitions of the European Green Deal and related initiatives, such as the Circular Economy Action Plan (European Commission, 2020). At the national level, several European countries utilise LCA to regulate embodied carbon, with other countries expected to follow suit in the coming years (Röck et al., 2022).

Created on 30-09-2024 | Update on 23-10-2024

Read more ->

Related cases

Related publications

No entries

Relational graph

icon case study Case Study
icon case study Concept
icon case study Publication
icon case study Blogposts