Vocabulary
Terms and definitions on affordable and sustainable housing *
Housing Retrofit
Area: Design, planning and building
Environmental Retrofit
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon emissions in the EU (European Commission, 2021). Environmental retrofit, green retrofit or low carbon retrofits of existing homes ais to upgrade housing infrastructure, increase energy efficiency, reduce carbon emissions, tackle fuel poverty, and improve comfort, convenience and aesthetics (Karvonen, 2013).
It is widely acknowledged that environmental retrofit should result in a reduction of carbon emissions by at least 60% in order to stabilise atmospheric carbon concentration and mitigate climate change (Fawcett, 2014; Johnston et al., 2005). Worldwide retrofit schemes such as RetrofitWorks, EnerPHit and the EU’s Renovation Wave, use varying metrics to define low carbon retrofit, but their universally adopted focus has been on end-point performance targets (Fawcett, 2014).
This fabric-first approach to retrofit prioritises improvements to the building fabric through: increased thermal insulation and airtightness; improving the efficiency of systems such as heating, lighting and electrical appliances; and the installation of renewables such as photovoltaics (Institute for Sustainability & UCL Energy Institute, 2012). The whole-house systems approach to retrofit further considers the interaction between the occupant, the building site, climate, and other elements or components of a building (Institute for Sustainability & UCL Energy Institute, 2012). In this way, the building becomes an energy system with interdependent parts that strongly affect one another, and energy performance is considered a result of the whole system activity.
Economic Retrofit
From an economic perspective, retrofit costs are one-off expenses that negatively impact homeowners and landlords, but reduce energy costs for occupants over the long run. Investment in housing retrofit, ultimately a form of asset enhancing, produces an energy premium attached to the property. In the case of the rental market, retrofit expenses create a split incentive whereby the landlord incurs the costs but the energy savings are enjoyed by the tenant (Fuerst et al., 2020).
The existence of energy premiums has been widely researched across various housing markets following Rosen’s hedonic pricing model. In the UK, the findings of Fuerst et al. (2015) showed the positive effect of energy efficiency over price among home-buyers, with a price increase of about 5% for dwellings rated A/B compared to those rated D. Cerin et al. (2014) offered similar results for Sweden. In the Netherlands, Brounen and Kok (2011), also identified a 3.7% premium for dwellings with A, B or C ratings using a similar technique. Property premiums offer landlords and owners the possibility to capitalise on their retrofit investment through rent increases or the sale of the property. While property premiums are a way to reconcile split incentives between landlord and renter, value increases pose questions about long-term affordability of retrofitted units, particularly, as real an expected energy savings post-retrofit have been challenging to reconcile (van den Brom et al., 2019).
Social Retrofit
A socio-technical approach to retrofit elaborates on the importance of the occupant. To meet the current needs of inhabitants, retrofit must be socially contextualized and comprehended as a result of cultural practices, collective evolution of know-how, regulations, institutionalized procedures, social norms, technologies and products (Bartiaux et al., 2014). This perspective argues that housing is not a technical construction that can be improved in an economically profitable manner without acknowledging that it’s an entity intertwined in people’s lives, in which social and personal meaning
are embedded. Consequently, energy efficiency and carbon reduction cannot be seen as a merely technical issue. We should understand and consider the relationship that people have developed in their dwellings, through their everyday routines and habits and their long-term domestic activities (Tjørring & Gausset, 2018).
Retrofit strategies and initiatives tend to adhere to a ‘rational choice’ consultation model that encourages individuals to reduce their energy consumption by focusing on the economic savings and environmental benefits through incentive programs, voluntary action and market mechanisms (Karvonen, 2013). This is often criticized as an insufficient and individualist approach, which fails to achieve more widespread systemic changes needed to address the environmental and social challenges of our times (Maller et al., 2012). However, it is important to acknowledge the housing stock as a cultural asset that is embedded in the fabric of everyday lifestyles, communities, and livelihoods (Ravetz, 2008). The rational choice perspective does not consider the different ways that occupants inhabit their homes, how they perceive their consumption, in what ways they interact with the built environment, for what reasons they want to retrofit their houses and which ways make more sense for them, concerning the local context.
A community-based approach to domestic retrofit emphasizes the importance of a recursive learning process among experts and occupants to facilitate the co-evolution of the built environment and the communities (Karvonen, 2013). Involving the occupants in the retrofit process and understanding them as “carriers” of social norms, of established routines and know-how, new forms of intervention can emerge that are experimental, flexible and customized to particular locales (Bartiaux et al., 2014). There is an understanding that reconfiguring socio-technical systems on a broad scale will require the participation of occupants to foment empowerment, ownership, and the collective control of the domestic retrofit (Moloney et al., 2010).
Created on 16-02-2022
Read more ->
* This vocabulary consists of definitions of key terms related to the combined research conducted by the 15 early-stage researchers. Each term has multiple definitions, each connected to one of the three main research areas: Design, Construction and Planning; Community Involvement; and Policy and Funding.
The joint construction of this vocabulary allows the researchers' projects to be interwoven. As such, the vocabulary is a tool for conducting transdisciplinary research on affordable and sustainable housing.
Entries are reviewed by RE-DWELL researchers and supervisors. The vocabulary is updated regularly.