Vocabulary

Terms and definitions on affordable and sustainable housing *

Flexibility

Area: Design, planning and building

Flexibility is defined as the ability and potential of a building to change, adapt, and rearrange itself in response to evolving needs and patterns, both social and technological (Schneider & Till, 2007). Additionally, a flexible building can maximise its value throughout its lifecycle, reducing the need for demolition and new construction by being resilient to market demands (Schmidt III et al., 2010). When applied to housing, flexibility ensures that homes can respond to the volatility of dwelling needs. Changes in household occupants impact space requirements, but these changes, such as variations in family size, structure, or lifestyle, are unpredictable and uncontrollable. Only a flexible housing system can effectively respond to both foreseeable and unforeseeable changes (Estaji, 2017).   The concept of flexibility emerged during the modern movement, linked to the idea of the 'open plan,' which was stimulated by new construction technologies in the 1920s (Montaner et al., 2019). Decades later, theories about building flexibility and transformation by John Habraken and Yona Friedman encouraged the theory of supports and the experimentation with growing megastructures. The idea of Open Building is tightly linked to the concept of flexibility, as it supports that everything except the structure and some circulation elements can be transformable through differentiating levels of intervention, distributing control, and encouraging user participation (Habraken, 1961). Many architects have argued that buildings should outlast their initial functions, emphasising the importance of flexibility to meet new housing demands. More recently, the works of Lacaton & Vassal highlight that flexibility should be achieved through the generosity of space. They believe that confined spaces for living, working, studying, or leisure inhibit freedom of use and movement, preventing any potential for evolution. Therefore, they advocate for providing much larger spaces, which through their flexibility, can be appropriated for various uses in private, public, and intermediate contexts (Lacaton & Vassal, 2017).   The term flexibility should not be confused with adaptability, although they are often used synonymously in literature. Flexibility involves the capability of allowing different physical arrangements, while adaptability implies the capacity of a space to accommodate different social uses (Groak, 1996). Adaptability is attained by designing rooms or units to serve multiple purposes without making physical changes. This is achieved through the organisation of rooms, the indeterminate designation of spaces, and the design of circulation patterns, providing spatial polyvalency as seen in the Diagoon Houses by Herman Hertzberger. This de-hierarchisation of spaces allows the dwelling to serve various purposes without needing alterations to its original construction. More recently, this approach has facilitated the development of gender-neutral housing solutions, as seen in the 85 dwellings in Cornellà by Peris + Toral Arquitectes or the 110 Rooms by MAIO, making domestic tasks visible and encouraging the participation of all household members. Flexibility, on the other hand, is achieved by modifying the building's physical components, such as combining rooms or units, often using sliding or folding walls and furniture. A paradigmatic example of this flexibility is the Schröder House by Gerrit Thomas Rietveld in 1924. These changes can be either temporary or permanent, allowing the same space to meet different needs. Embedded flexibility in a building would allow for the partitionability, multi-functionality, and extendibility of spatial units in a simple way, meeting additional user demands (Geraedts, 2008).   In relation to affordable and sustainable housing, flexibility plays a key role. “A sustainable building is not one that must last forever, but one that can easily adapt to change” (Graham, 2005). Implementing flexibility strategies can lead to efficient use of resources by designing housing that can be reconfigured as needs change, minimising the environmental footprint in the long term by avoiding early demolition. Incorporating Design for Disassembly practices would ease the adaptation of spaces and the circularity of building components, improving the building’s lifespan (Crowther, 2005). This approach also facilitates the incorporation of energy-efficient technologies and sustainable materials, reducing the operational costs of housing and enhancing affordability.   Nevertheless, regulatory and societal challenges remain. Overcoming strict building standards, which often dictate room sizes and follow a hierarchical distribution of dwellings, has proven to be a significant challenge for the development of alternative and more flexible housing solutions. However, transdisciplinary collaboration among housing authorities, developers, architects, and users has shown to be highly effective in achieving high degrees of flexibility in both technical and regulatory aspects, as demonstrated in Patch 22 in Amsterdam.

Created on 19-06-2024

Author: C.Martín (ESR14)

Read more ->

* This vocabulary consists of definitions of key terms related to the combined research conducted by the 15 early-stage researchers. Each term has multiple definitions, each connected to one of the three main research areas: Design, Construction and Planning; Community Involvement; and Policy and Funding.

The joint construction of this vocabulary allows the researchers' projects to be interwoven. As such, the vocabulary is a tool for conducting transdisciplinary research on affordable and sustainable housing.

Entries are reviewed by RE-DWELL researchers and supervisors. The vocabulary is updated regularly.